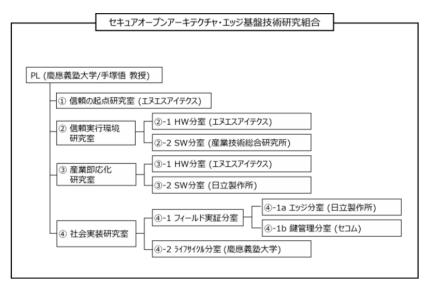


TS-Perf: Performance measuring method in the TEE (Trusted Execution Environment) of various CPUs

RISC-V Day Tokyo Summer 2024 August/1

IISEC: Institute of Information Security (情報セキュリティ大学院大学)
Kuniyasu Suzaki (須崎 有康)


Who am I? (Kuniyasu Suzaki)

- Professor, IISEC: Institute of Information Security (Graduate School) from 2022/9/1
 - Former: AIST (National Institute of Advanced Industrial Science and Technology)

 Joined a national project (2018-2023) for RISC-V based TEE research at TRASIO (Technology Research Association of Secure IoT Edge application based on RISC-V Open architecture)
 - ◆TRASIO members were Hitachi, NSITEXE (Current Denso), SECOM, Keio University, and AIST.

研究体制図

- セキュアオープンアーキテクチャ・エッジ基盤技術研究組合 (TRASIO)
- NEDOプロジェクト「セキュアオープンアーキテクチャ基盤技術と そのAIエッジ応用研究開発 FY2018-2022」

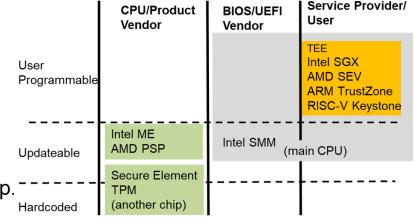
Contents

- What is TEE (Trusted Execution Environment)?
 - RISC-V TEE "Keystone" (based on PMP: Physical Memory Protection)
- Why is measuring performance difficult on TEE?
- TS-Perf
 - Used Techniques
 - ◆Portable Library which offers same APIs.
 - ◆ Separate Compilation
 - ◆Report after TEE process termination because of communication overhead between TEE and REE.
- Conclusion

This presentation is based on

- Library Implementation and Performance Analysis of GlobalPlatform TEE Internal API for Intel SGX and RISC-V Keystone [TrustCom 2020]

What is TEE? (1/2)



Normal World

App

Normal OS

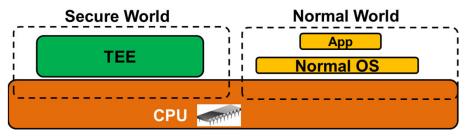
- TEE (Trusted Execution Environment) is one of HIEE(Hardware-assisted Isolated Execution Environments)
 - HIEE includes
 - ◆X86 SMM (System Management Mode) used by BIOS/UEFI
 - ◆Intel ME (Management Engine) and TPM which are anther chip.
 - TEE is featured to be programable by third party.
- TEE separates CPU into two worlds.
 - Normal World (i.e., REE: Rich Execution Environment)
 - ◆Normal OS(Linux, Windows) runs
 - Secure World (i.e., TEE: Trusted Execution Environment)
 - ◆It is independent form vulnerabilities of OS and Hypervisor.
 - Critical apps runs.

CPU CPU

Secure World

TEE

What is TEE? (2/2)



■ Features:

- (To speak radically) TEE offers a temporal isolation execution only.
- Long term key managements require another method.
 - ◆Hardware Root of Trust is an anti-tamper hardware to store keys.
 - ◆Remote Attestation (method to confirm the soundness of hardware and software) is based on the keys saved in Hardware Root of Trust.

Available CPUs

- ARM TrustZone (Smart phone)
- Intel SGX (PC, Server), Intel TDX(Server)
- AMD SEV (Server)
- RISC-V has many (later slide)

TEE's Image (This image resembles to Arm TrustZone)

Some TEEs are based on virtualization technology, called Confidential Computing and used on Cloud mainly.

Apps on TEE and CC

Critical Processing Killer Application on TEE of Smartphone. Key Management Android KeyMaster DRM Smartphone's Widevine(Google) **Small Memory** ♦ Windows Ultra HD Blu-ray Viewer Suitable for Smartphone uses Intel SGX Arm TrustZone Cannot be Killer App. Personal Info ◆ Fingerprint authentication RISC-V? ◆ FIDO Authenticator Candidate for Killer App? ♦ Hardware Wallet for Crypto Currency Data and Code Hiding Machine Learning Large Memory Privacy Protection Required Server & Cloud Intel SGX, AMD SEV Gene Data Processing **Target of Confidential** Computing? Candidate for Killer App on Cloud?

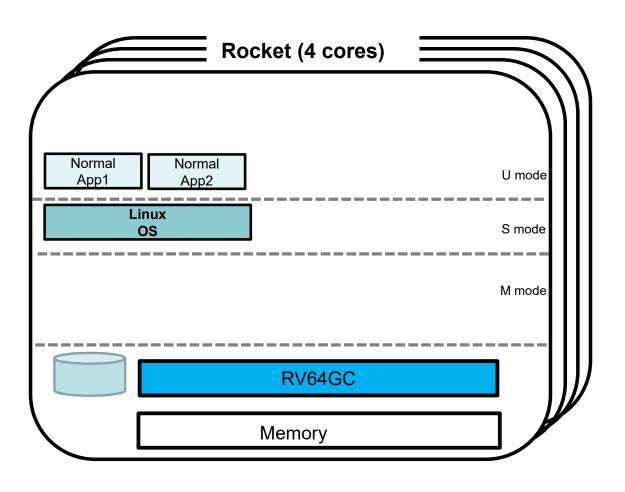
RISC-V TEE

- TEE based on RISC-V
 - Sanctum [MIT,USENIX Sec'16]
 - TIMBER-V [Graz University of Technology, NDSS'19]
 - MI6 [MIT,MICRO'19]
 - Keystone [UC Berkeley, EuroSys'20]
 - HECTOR-V [Graz University of Technology, arXiv'21]
 - uTango [University of Minho, arXiv'21]
 - Cure [Darmstadt University of Technology, USENIX Sec'21]
 - CHERI-TrEE [University of Cambridge, IEEE S&P'23]
 - HPMP (Hybrid Physical Memory Protection) [Shanghai Jiao Tong University, MICRO'23]
 - MultiZone [HexFive]
 - SiFive Shield / World Guard [SiFive]
 - AP-TEE (Application Processor –TEE) [RISC-V International TEE WG]
 - CoVE (Confidential Virtual Machine for RISC-V) [Rivos Inc., arXiv'23]

Industry

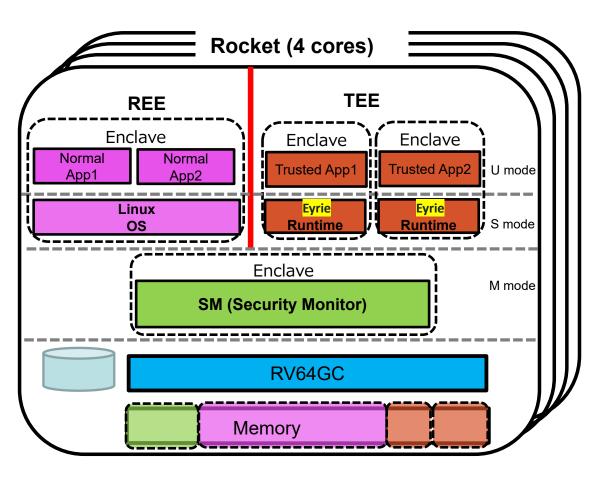
Academia

Many implementations require hardware extension Keystone and MultiZone use PMP (Physical Memory Protection) which is default function of RISC-V.


RISC-V TEE "Keystone"

- TEE developed by UC Berkeley
 - The developments are lead by RISC-V core members (Prof. Krste Asanović)
 - PMP(Physical Memory Protection), which is defined by Privileged Architecture Specification, is utilized.
 - A Project of CCC(Confidential Computing Consortium)

Normal 64bit RISC-V



- This figure assumes Linux on 64bit Rocket (4 cores)
 - Apps uses User Mode
 - Linux Kernel uses Supervisor Mode
 - Interrupts go to M mode and the handlers runs in Supervisor mode. (This figure omits the parts)

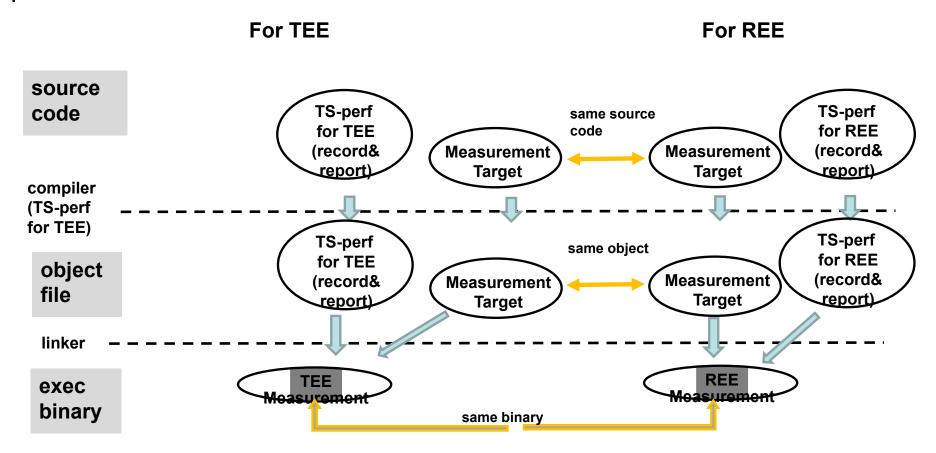
Keystone on RISC-V

- No Hardware modification
- Memory Protection by PMP
 - PMP can separate memory regions and execution environments.
 - PMP has priority (high low).
- Each PMP offers "Enclave"
 - The highest PMP is used by "Secure Monitor" (M mode)
 - The lowest PMP is used by "Linux" as REE
 - In this figure 2 TEEs (Enclaves) use PMP.

- There are 3 problems.
- Most TEE assumes original SDK (Software Development Kit), which makes difficult to compare the performance.
 - RISC-V Keystone assumes "Eyrie" as an OS environment, which is not POSIX.
- 2. Different binaries between TEE and REE
 - Application's performance on TEE and REE can not be easily compared because most binaries are build for TEE and REE.
- 3. The communication overhead is heavy between TEE and REE.
 - TEE has no display and needs to communicate to the REE, but the overhead is heavy.
 The measurement results cannot report immediately because it affects the TEE performance.

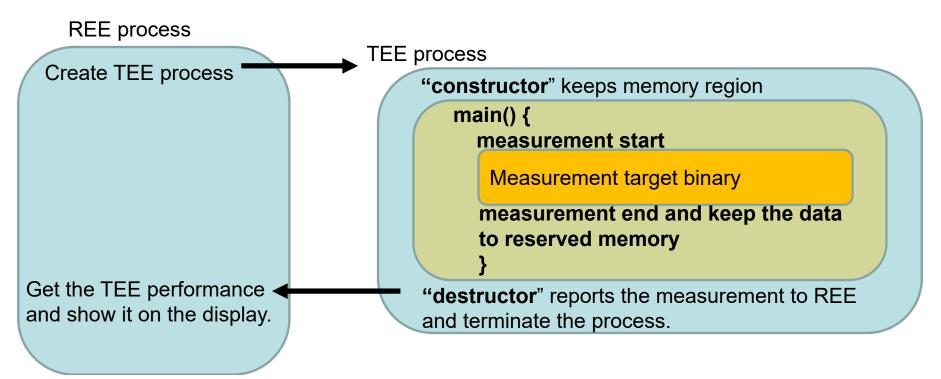
TS-Perf solved these problems.

Problem 1: different TEE SDKs


- This problem is solved by offering the same API library.
- We developed a portable library of GlobalPlatform's TEE Internal API because the specification is opened and widely used on most TEEs on smartphones (Arm TrustZone).
 - The portable library is developed for RISC-V Keystone and Intel SGX.
 - Using the portable library, we can compare the same software on 3 TEE architectures (RISC-V Keystone, Intel SGX, and Arm TrustZone).

 Library Implementation and Performance Analysis of GlobalPlatform TEE Internal API for Intel SGX and RISC-V Keystone [TrustCom 2020]

Problem 2: Different binaries between TEE and REE



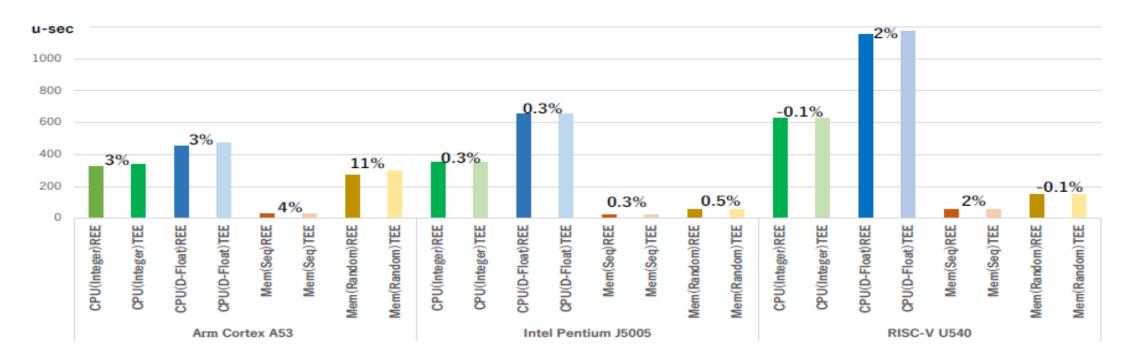
■ This problem is solved by "separate compilation" to compare the same binary performance between TEE and REE.

Problem 3: Heavy communication overhead between TEE Tand REET

- This problem is solved by the performance reporting just before the termination of the process.
- We utilize GCC; "profile option", "constructor" and "destructor".
 - "constructor" keeps memory region to log the measurement of profile option.
 - "destructor" reports the measurement results from TEE to REE at the end of TEE process.

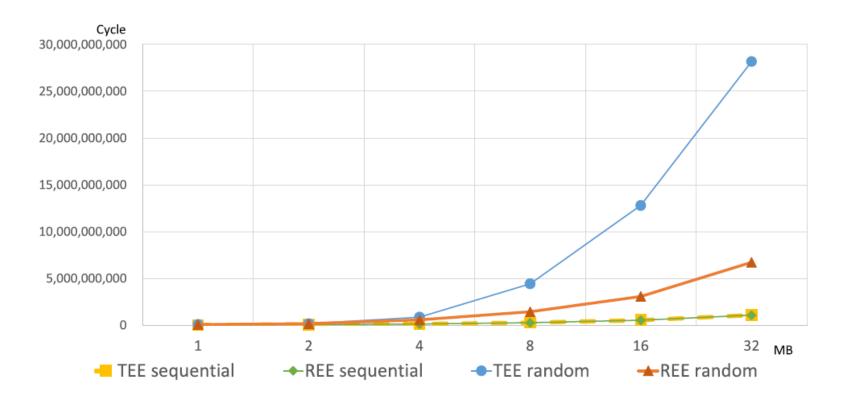
■ Three TEE architectures (Arm Trust Zone, Intel SGX, and RISC-V Keystone)

	CPU	Core	Mem	REE	TEE
			(GB)		
Raspberry	Cortex	4	1	Linux	TrustZone
Pi3 B+ [43]	-A53	+	1	4.14.56	(OP-TEE 3.8.0)
Intel NUC	Pentium	4	8	Linux	SGXv2
7BJYH [44]	J5005	4	0	5.3.0	(SDK v2.8)
SiFive	U540	4	8	Linux	Keystone v0.3
Unleashed [45]	0340	+	0	4.15.0	(Eyrie runtime)


■ CPU time counter

	Counter	Instruction	Frequency (MHz)
Intel x86-64 (Pentium J5005)	TSC	rdtsc	1,500
Arm Cortex-A (Cortex-A53)	CNTVCT_EL0	mrs	19.2
RISC-V RV64 (SiFive U540)	HPM	rdcycle	1,000

Performance measuring between different TEEs and REEs


Performance Comparison between TEE and REE on Arm Cortex-A, Intel X86-64, and RISC-V U540

Measuring the affect of memory encryption on Intel SGX

- Measuring wide memory sequential access and random access
 - This result shows the performance difference appears over the cache size (4MB L2).

Conclusions

- Measuring TEE performance had 3 problems.
 - 1. Different programming style.
 - 2. Different binary between TEE and REE
 - 3. Heavy communication overhead between TEE and REE
- How to Solve by TS-Perf
 - 1. Provide a portable GlobalPlatform API by a library.
 - Separate Compilation allows to compare the true binary performance between TEE and REE.
 - 3. GCC customization to report the performance results after process termination
- TS-Pers measures performance between TEE and REE.
 - Measuring true difference of TEE and REE.

This presentation is based on

- TS-Perf: General Performance Measurement of Trusted Execution Environment and Rich Execution Environment on Intel SGX, Arm TrustZone, and RISC-V Keystone [IEEE Access 2021]
- Library Implementation and Performance Analysis of GlobalPlatform TEE Internal API for Intel SGX and RISC-V Keystone [TrustCom 2020]